
Desktop sharing with SIP

Author : Willem Toorop ∗

Supervisor : Michiel Leenaars †

February 2, 2009

Abstract

This report describes how Desktop and Application sharing sessions
can be realised using SIP. Investigated is what possibilities require the
least or no adaptation of existing SIP infrastructure. An implemen-
tation of the RFB protocol tunneled over a MSRP session using the
sipsimpleclient library is presented as a possible solution.

The research question this report tries to answer is: ”How can
application and desktop sharing, initiated by SIP, be realised in existing
SIP infrastructure with the least possible impact on that infrastructure”

Many thanks to Adrian Georgescu who
came up with the RFB over MSRP idea.

Research Project 1

∗willem.toorop@os3.nl
†michiel@nlnet.nl

1

mailto:willem.toorop@os3.nl
sip:michiel@nlnet.nl

Desktop sharing with SIP

Contents

1 Introduction 3
1.1 What is application and desktop sharing? 3
1.2 What is SIP? . 3
1.3 Why application/desktop sharing with SIP 4

2 How does SIP work? 5
2.1 Overview . 5
2.2 Registration . 6

2.2.1 Finding the registrar . 6
2.2.2 Authenticating to the registrar 7

2.3 Calling out . 8
2.3.1 The SDP format . 9

2.4 Redirections . 11
2.5 Other features of SIP . 12

3 The NAT-Traversal problem 13
3.1 What is NAT? . 13
3.2 How does NAT work? . 13
3.3 How does SIP deal with NAT? . 14
3.4 What about the sessions themselves? 15

3.4.1 Industry answers . 15
3.4.2 The IETF answer . 17

3.4.2.1 STUN . 18
3.4.2.2 TURN . 22
3.4.2.3 ICE . 22
3.4.2.4 ICE-TCP . 23

3.4.3 Media specific solutions . 23
3.4.3.1 MSRP . 23
3.4.3.2 MSRP-Relays . 25

3.5 Evaluation . 26

4 How to make it work 26
4.1 IETF proposals . 27
4.2 How to make it work now . 28

4.2.1 RFB over MSRP . 28
4.2.1.1 SDP messages proposal 29
4.2.1.2 MSRP messages . 29

5 Implementation 31
5.1 The SIP SIMPLE client Python software library 31
5.2 The software used . 31
5.3 Endpoint connection types . 32

6 Conclusion 35

Glossary 36

References 40

2

Desktop sharing with SIP

1 Introduction

In this section I will describe: what application and desktop sharing is, what
SIP is, and why, from a user perspective, it would be nice to be able to set
up desktop and application sharing sessions with SIP.

1.1 What is application and desktop sharing?

In this report, when we talk about Application Sharing we mean the sharing
of the graphical user-interface of an application amongst multiple users si-
multaneously in real time. The user-interface is the window through which
the application communicates with the end-user.

A shared application is running on a host computer, which can be the
computer of one of the end-users. Generally this user will provide access
to the application to other users, but different setups are imaginable; The
host computer could be a server dispensing new instances of a certain ap-
plication to end-users on request. A company selling an application could,
for example, provide evaluation services of the application via application
sharing.

But, application sharing is not only remotely starting an application and
getting the user-interface presented locally. This feature, which in the con-
text of the X-Windows system is called Network Transparency, is a subset
of application sharing functionality. With application sharing we not only
have remote access to an user-interface of a new started application, but
also of an already running application.

With Desktop Sharing, in stead of a single application shared amongst
multiple users, a whole screen is shared. Since the desktop, and all appli-
cation windows on it, are run by a controlling application, desktop sharing
can also be viewed as application sharing of that controlling application.
On a X-Windows system this controlling application is the X server usu-
ally started by the X command. On a MS-Windows system the application
running the desktop is explorer.exe.

1.2 What is SIP?

SIP, the Session Initiation Protocol [1], is an IETF protocol for setting up
sessions between end-users. SIP makes sure the end-users can be found
wherever they are on the internet. The end-users can be found by their
address-of-record, which usually is the same as their email-address. SIP
also helps in negotiating the type of session that the end-users want to set
up. These sessions are often multimedia sessions such as a voice or video
calls, but SIP itself is not responsible for those sessions. It just finds the
end-user and then makes sure the type of sessions is agreed upon.

The type of those sessions are certainly not restricted to voice or video

3

Desktop sharing with SIP

calls, but can in fact be anything; Although those types do have to be
registered with IANA1 as MIME media-types. See: http://www.iana.org/
assignments/media-types/index.html.

The end-users makes use of a so called User Agent (UA), to setup a
session with another end-user. The User-Agent can be a computer program,
but can also be a hand-held device such as a telephone. End-users can have
multiple User Agents which each support different sessions. SIP ensures the
session is set up with the User Agent supporting that session type.

With SIP, end-users can also use features usually seen in telephony net-
works: End-users can forward their address to another address; They can
transfer an existing session to another end-user; They can invite other end-
users to participate in an existing session (like in a conference call).

SIP, at the moment, has a widespread use in VOIP and Internet Tele-
phony. Many internet providers currently offer telephony services using SIP
and there is an increasing number of telephony providers offering cheap rates
to the public telephone network (PSTN) via SIP2.

The main difference between SIP and other standards, is that SIP users
a relatively simple infrastructure and most features are in the User Agent.
Other signaling standards, such as SS7, use dumb end-points and concen-
trate all their functionality in their network architecture. This makes it very
easy to add new features to SIP. One only has to adapt the User Agent used;
All the existing SIP infrastructure doesn’t need any adaptation.

SIP finds also popular usage in Instant Messaging (IM). Microsoft’s Mes-
senger version 4 and 5 support SIP and many free and opensource software
IM clients support SIP; Like SIP Communicator. Often those clients com-
bine Instant Messaging functionality with VOIP and video conferencing ca-
pabilities.

1.3 Why application/desktop sharing with SIP

There are many application and desktop sharing products available. Some
are installed with the operating system, such as Terminal Services with
Microsoft Windows, using the RDP protocol. Others use a publicly available
protocol such as the products based on the RFB[2] protocol; Like RealVNC

Often they are incorporated within an Instant Messaging client. Mi-
crosoft’s Netmeeting supports application sharing, and Apple’s iChat sup-
ports screen (desktop) sharing, but these are closed source products, only
available on the operating system they are build for. They also have the
disadvantage of using proprietary protocols, or modified open standards for
IM, application/desktop sharing and finding the participating party.

A application/desktop sharing solution using SIP would have the advan-
tages that:

1The body responsible for the coordination of internet protocol resources.
2See for example http://sip.startpagina.nl/ under “SIP Telcos”

4

http://www.iana.org/assignments/media-types/index.html
http://www.iana.org/assignments/media-types/index.html
http://www.sip-communicator.org/
http://www.realvnc.com/
http://sip.startpagina.nl/

Desktop sharing with SIP

• SIP is an open standard. This stimulates the development of SIP
supporting products.

• You have a wide variety of SIP account providers, which are com-
pletely independent of the User Agent used. It is also possible for
organizations to implement there own SIP infrastructure (which is rel-
atively simple), and even makes them independent from a SIP account
provider.

• End-users can be contacted by their SIP address, which can be the
same as their email-address and is thus easy to remember.

• It inherits all SIP’s features. (Redirection, conference calls, call for-
warding)

• The application/desktop sharing session can be combined with other
session types using the same SIP connection. (IM, audio, video etc.)

One of he initial goals of this research project was to create an applica-
tion sharing with SIP implementation. Unfortunately I haven’t succeeded
in realizing application sharing, although I have good references and clues
for how this can be realised. I did manage to get a working desktop sharing
implementation with SIP. Therefor the title of this report is “Desktop shar-
ing with SIP.” Still, the infrastructural needs for both are explored in this
report, and in fact are more or less the same.

The research question this report tries to answer is: ”How can application
and desktop sharing, initiated by SIP, be realised in existing SIP infrastruc-
ture with the least possible impact on that infrastructure”

2 How does SIP work?

In this section a very basic overview is given of the workings of SIP.

2.1 Overview

There are two kind of SIP addresses. One is the regular SIP address, an
end-user can be contacted with by another end-user. This regular SIP ad-
dress is called a address-of-record, and is formated as a URL in the form
sip:user@domain. The other one, is not to be used by end-users, but for
the internal workings of the SIP network elements; It is a so called SIP
contact-address and denotes a host, port, protocol, and option id servicing
the SIP protocol. It is also formated as a URL and is in the form:
sip:id@host:port;transport=protocol;parameters.
Extra parameters can follow a contact-address.

SIP infrastructure consists of four different types of network elements:
User Agents, Registrars, Proxies and Redirect servers. The User Agent is

5

Desktop sharing with SIP

the client program used by the end-user. The other elements are more a
role in the SIP infrastructure, then services running on separate hosts. One
host could be, and often is, a Registrar, a Proxy and a Redirect server in
one. The network elements are described in the following subsections.

2.2 Registration

The purpose of the registration is to bind a address-of-record to one or
more contact-addresses. By looking up the contact-address for an address-
of-record, SIP network elements know where to contact the end-user’s UA.
This is how the location-independency of SIP is realised.

When an end-user first starts its User Agent, it first registers with a SIP
Registrar. After registration the Registrar (and other SIP network elements
using the same Location Service), knows what contact-address should be
contacted for a specific address-of-record.

The IP-address and port number, on which to contact the registrar, is
either configured in the UA, discovered by DNS lookups[3] or via a request
to the “all SIP servers” multicast address: sip.mcast.net (224.0.1.75).

2.2.1 Finding the registrar

When using DNS, first a NAPTR record[4] query is done on the domain
part of a end-user’s sip address. NAPTR records are the replacement for
service specific record, such as MX.

The end-user address-of-record might for example be sip:michiel@isoc.
nl. We first then have to query a NAPTR record for the isoc.nl domain.
The returned value was at the time of writing:
10 0 "S" "SIP+d2u" "" _sip._udp.isoc.nl..

The fields in this returned value are:

Order Preference Flags Services Regexp Replacement
10 0 "S" "SIP+D2U" "" sip. udp.isoc.nl.

The Order and Preference denote which Registrars should be tried first
to contact. As our query returned only one record, that record is the one to
be followed. The Flags field indicates that this NAPTR record points us to
a SRV record. The Services field indicates that we can contact that server
over UDP. The Services field is either "SIP+D2X " or "SIPS+D2X ", where X

denotes the underlying transport protocol: U for UDP, T for TCP and S for
SCTP. The Regexp and Replacement fields should be interpreted as: replace
the path in the SIP address that matches the regular expression given by
Regexp (in our case the whole address), and replace it with Replacement
_sip._udp.isoc.nl..
We now have to do a SRV record[5] lookup of _sip._udp.isoc.nl. This
gives at the time of writing: 0 0 5060 sip.dns-hosting.info.. The fields

6

sip:michiel@isoc.nl
sip:michiel@isoc.nl

Desktop sharing with SIP

in this returned value are:

Priority Weight Port Target
0 0 5060 sip.dns-hosting.info.

The first two fields, Priority and Weight, again denote the preference
in which to try the returned records. Since we have only one record, this
does not apply. The Target and Port specify which host to contact, on which
port. A host and port can be transformed in a contact-address. The contact-
address of the Registrar for isoc.nl is thus: sip:sip.dns-hosting.nl:5060;transport=udp.

2.2.2 Authenticating to the registrar

The registrar is identified to the UA by a TLS certificate in case of SIPS3,
or not at all, in case of SIP. The registrar authenticates the user with HTTP
Digest Authentication[7].

After a registration request is made by an unauthenticated UA, the Reg-
istrar first send the UA a challenge (nonce). The UA responds by returning
a MD5 hash of two other MD5 hashes and the nonce. One of the rehashed
MD5 hashes is a hash of the end-users username, password and the realm
(the domain part of the contact-address of the Registrar). The other re-
hashed MD5 is a hash of the method (REGISTER) and the URI of the
request.

User
Agent

Registrar

REGISTER sip:domain SIP/2.0

From: <sip:username @domain

Contact: <sip:id @ip-address :port >;transport=prot.

SIP/2.0 401 Unauthorized

WWW-Authenticate: Digest nonce="nonce "

REGISTER sip:domain SIP/2.0

From: <sip:username @domain

Contact: <sip:id @ip-address :port >;transport=prot.

Authorization: Digest response="hash "

SIP/2.0 200 OK

Figure 1: Registration

In figure 1, such a transaction is visualized. SIP messages look like those
defined in HTTP[8]. They follow a request/response transaction model.

3SIPS is SIP with TLS[6]

7

Desktop sharing with SIP

A request consists of a text line containing the method, the arguments
for the method and a protocol specifier (SIP/2.0 in case of SIP). After that
a set of headers, followed by an empty line and an optional message payload
follows the Internet Message Format[9] standard. The first line of a response
consists of a protocol specifier, followed by a status code (à la Enhanced Mail
System Status Codes[10]) and a textual representation of the status.

The method used to register an UA is: REGISTER. The address-of-record
to bind a contact-address for, is in the From: header. The contact-address,
is in the Contact: header. The Registrar should store this binding in a
Location service (a database) which is also accessible for the SIP network
elements that need to lookup the contact-address.

2.3 Calling out

After registration an end-user can initiate a session with another end-user
by using the address-of-record for this end-user. The UA, acting on behalf
of that end-user, does this by sending a INVITE request to the SIP Proxy
for the address-of-record. A UA finds the Proxy using DNS or a by sending
to the “all SIP servers” multicast address: sip.mcast.net (224.0.1.75),
in the same manner Registrars can be found (see 2.2.1).

Note that as there is no difference in DNS for an entry for a Registrar
and Proxy, when a UA finds its Registrar via DNS, it is also the UA’s Proxy.
If the Registrar and the Proxy for a certain domain are on different hosts,
the Registrar has to be configured manually for the UA using address-of-
records for that domain. Note that an UA does not have to know the proxy
for its own domain. It is only interested in contacting the proxy for the
address-of-record it wishes to reach.

In figure 2 is shown how the UAs and the Proxy interact in setting up a
session. The encircled numbers indicate the steps involved.

1. Alice’s UA sends a INVITE request to Bob’s Proxy. Included in the
request is a description of the type of session Alice wishes to initiate.
It is described using SDP, the Session Description Protocol[11].

After the Proxy received the invitation from Alice, it first confirms
that it will try to contact Bob for her, by replying with a 100 Trying
status response. It then looks up the contact-address for Bob, and
sends the INVITE request to that address.

2. Bob’s UA received Alice’s invitation. If it can handle the media de-
scribed in the SDP, it informs Bob (for example with a ringing sound).
It then informs the Proxy that is has informed Bob about the request.
The Proxy forwards this to Alice’s UA.

3. Bob has heard Alice’s invitation and decides to answer the call. The
UA sets up a listening socket to accept the session on. It then con-

8

Desktop sharing with SIP

Alice’s
User

Agent

Proxy for
example.com

Bobs
User

Agent

INVITE sip:bob@example.com SIP/2.0

Contact: Alice’s contact-address

SIP/2.0 100 Trying

INVITE sip:bob@example.com SIP/2.0

Contact: Proxy’s contact-address

SIP/2.0 180 Ringing

Contact: Bob’s contact-address

SIP/2.0 180 Ringing

Contact: Bob’s contact-address

SIP/2.0 200 OK

Contact: Bob’s contact-address

SIP/2.0 200 OK

Contact: Bob’s contact-address

ACK Bob’s contact-address SIP/2.0

ACK Bob’s contact-address SIP/2.0

1

2

3

4

Media session

Figure 2: Making a call

structs a new SDP message not only confirming the type of media,
but also providing the listening socket’s IP-address, port and proto-
col. Alice’s UA may contact that to initiate the session. It sends this
SDP with a 200 OK status response to the Proxy. The Proxy forwards
it to Alice’s UA.

4. Alice’s UA confirms that it will setup the session by sending Bob’s
proxy a ACK method. The Proxy forwards this to Bob’s UA. Alice’s
UA initiates the media session directly with the protocol and to the
IP-address and port that Bob’s UA provided in the SDP in step 3.

2.3.1 The SDP format

SDP is used to agree upon the media type and format to be used, and the
host, port and protocol on which to setup the media session. It does this
with a request/response transaction model. The request indicates the media
type and an optional list of supported encoding formats by the requesting
party. The response then narrows the list of supported encoding formats to

9

Desktop sharing with SIP

the formats it supports itself, and mentions an IP-address, port and protocol
that can be used by the requesting party to initiate the media session. The
requesting party then picks its favourite encoding format and initiates the
media session.

v=0

o=- 2713 2713 IN IP4 145.100.104.30

c=IN IP4 145.100.104.30

m=audio 51942 RTP/AVP 104 103 102 101

a=rtcp:51943 IN IP4 145.100.104.30

SDP Request

v=0

o=- 2766 2767 IN IP4 192.0.0.33

c=IN IP4 192.0.0.33

m=audio 40036 RTP/AVP 104 101

a=rtcp:40037 IN IP4 192.0.0.33

SDP Response

Figure 3: A SDP Request & Response message

In figure 3 a stripped form of a SDP request and response is presented. A
SDP message consists of a list of field=value pairs. The fields are designated
by a single character.

The fields have the following meaning:

v gives the version number and is always “0”.

o gives the originator of the session. The value is a list of values. The values
of the request were:
username sess-id sess-version nettype addrtype unicast-address

- 2713 2713 IN IP4 145.100.104.30

username Not applicable in this media session negotiation. SIP takes
care of that.

sess-id Must together with the remaining values, except for sess-
version be unique for this session negotiation.

sess-version Its usage is up to the creating tool. But it should be
increased every time the SDP message is modified.

nettype The type of network. Currently only IN is defined to have
the meaning “Internet.”

addrtype The type of address. Currently only IP4 and IP6 are de-
fined.

unicast-address The address of the machine from which the session
was created.

c contains the connection data. It is a list of values for nettype, addrtype
and unicast-address which have the same meaning as in the originator
field.

m This line give the media type and formats requested and agreed upon.
It is a list of values. The values of the request were:
media port protocol format
audio 51942 RTP/AVP 104 103 102 101

10

Desktop sharing with SIP

media The media type. Defined media types are: audio, video,
text, application and message. It reflects the media-types list
maintained by IANA (See http://www.iana.org/assignments/
media-types/), and more can be found there.

port The transport port to which the media stream is sent.

protocol The protocols used to transport the media stream. It can
be layered. The layers are divided by slashes. In our exam-
ple RTP/AVP means: The AVP protocol over RTP. RTP implies
that the transport layer protocol is UDP. Other possible values
are listed bye IANA here: http://www.iana.org/assignments/
sdp-parameters. The list includes the “TCP/TLS/MSRP” pro-
tocol (MSRP over TLS over TCP) that we will explore later in this
report.

format A protocol specific list of formats for the protocol. In a re-
quest, a list is presented that the requester supports. In the re-
sponse this is narrow down to also match the formats the called
party supports. The requester then eventually picks its favourite
format from that list.

a contain optional extra attributes for the media defined in the media field.
In our example an address is given to control the RTP media stream.

2.4 Redirections

With SIP it is possible to redirect calls for an address-of-record to a differ-
ent URL. SIP doesn’t specify how this redirection of an address should be
registered; This is left for the creators of SIP network elements to decide.
It only specifies the transactions involved to follow a redirection. For that
purpose it introduces a special network element: the Redirect server.

In figure 4 an example is given of the role of a Redirect server in a
redirection transaction. Alice sends a INVITE request to the Proxy of the
example.com domain. This accidentally happens also to be a Redirect server,
and it informs Alice’s UA by responding with a “3” class response code
(redirection). The URL that Alice’s UA should follow is given in the Contact
header. Alice’s UA confirms the reception of the redirect by replying with
an ACK.

Alice’s UA can now inform Alice about the redirection, and ask if Alice
wants to follow the given URL. Or it could just follow the given URL. This
is up to the creators of the UAs.

When the URL is followed and, as in our example, is a SIP address-of-
record, the invitation is then continued as described in subsection 2.3.

11

http://www.iana.org/assignments/media-types/
http://www.iana.org/assignments/media-types/
http://www.iana.org/assignments/sdp-parameters
http://www.iana.org/assignments/sdp-parameters

Desktop sharing with SIP

Alice’s
User

Agent

Redirect
server for

example.com

Proxy for
os3.nl

Willem’s
User

Agent

INVITE sip:bob@example.com SIP/2.0

Contact: Alice’s contact-address

SIP/2.0 302 Moved Temporarily

Contact: <sip:wtoorop@os3.nl>

ACK sip:bob@example.com SIP/2.0

INVITE sip:wtoorop@os3.nl SIP/2.0

Contact: Alice’s contact-address

SIP/2.0 100 Trying

INVITE sip:wtoorop@os3.nl SIP/2.0

Contact: Proxy’s contact-address

SIP/2.0 180 Ringing

Contact: Willem’s contact-address

SIP/2.0 180 Ringing

Contact: Willem’s contact-address

Figure 4: Redirection

2.5 Other features of SIP

Other features, usually seen in telephony networks, such as conference calls,
are not defined in the SIP specifications. It is up to the implementors of
User Agents to make them work. Often such a feature is highly dependent
on the media type as well.

For example, with a conference call, for audio streams a participant
would like to have the audio streams generated by all other participants
mixed in a single audio stream. But the video streams should not be mixed,
and presented as a separate video channels that show all other participants.
In the context of Instant Messaging, a conference call (or a call to a chat-
room), means that the messages of the participants are presented sequential
after each other.

SIP is only responsible for the initiation of the sessions, and leaves all

12

Desktop sharing with SIP

such issues with the media-type specifications and the implementors of the
UAs.

3 The NAT-Traversal problem

In this section is explained: what NAT is, what its advantages are, and
what the problem is with NAT: (The NAT-Traversal problem). Then the
extensions for SIP to deal the NAT-Traversal problem are explained.

The media sessions also have to deal with the NAT-Traversal problem.
First the Industry provided solution types for the problem are given. Finally
it sums up the solutions the IETF came up with.

3.1 What is NAT?

Network Address Translation (NAT) is a technique with which the network
address information is altered in a packet when it passes through a router.

Most common usage is network masquerading: the (private) source ad-
dresses of a network are altered to a single (public) address. With this
technique an internet connection which services a single IP-address (as is
common with consumer ADSL and cable subscriptions), can have multiple
computers use that internet connection. Other forms of NAT include DNAT,
or Destination NAT, which alters the destination address of a packet cross-
ing a router, but they are not of relevance for our research and not further
explained or explored in this report.

NAT has a widespread usage on the internet today. ADSL and Cable-
modem users are almost guaranteed, that their modem masquerades their
internal IP-address to a single public outside IP-address. Another advantage
using Masquerading NAT for corporates is that they don’t have to change
their internal IP-addressing plan if the switch internet provider.

It also, as a side effect, protects the computers on the inside site of the
router against incoming connections from the outside (the internet). The
cause for this side effect is explained in the next subsection 3.2. This causes
problems for protocols such as SIP, because a User Agent on the inside can
not be contacted by the Proxy for the domain it has an address-of-record
for. Also the media session can not be setup between end-points, because it
will be an incoming connection from the outside for one of the participants.
This is known as the NAT-Traversal problem.

3.2 How does NAT work?

Figure 5 shows a picture of a typical NAT setup. The Client on the inside site
of the router connects through the NAT router to a Server. The NAT router
then takes the source IP-address and source port of the initial connection
packet, and looks if there is an entry for the pair in the Internal column of

13

Desktop sharing with SIP

Client
10.0.0.8

NAT
Server

74.125.79.104

10.0.0.8:2345 →
74.125.79.104:80

192.0.0.1:6789 →
74.125.79.104:80

NAT Binding table
Internal External
10.0.0.8:2345 192.0.0.1:6789

Figure 5: Network Address Translation

its NAT Binding table. If there is an entry it replaces the source IP-address
and source port of the packet with the values in the External column and
forwards it to the Server on the outside. If there isn’t an entry, it generates a
port that is not yet in use in the External column of the binding table, and
stores an new Internal address:port, External address:port in its binding
table.

Now when a response is received from the Server, it will be targeted to
the NAT router itself. The NAT router then has to lookup the port num-
ber, the packet was targeted towards in the External column of its binding
table, and translate the destination IP-address and port to the values in the
Internal column on the same row.

When no incoming packets have been received, either from the inside or
outside, for a certain amount of time for a row in the binding table, the row
is removed from the table.

Besides the fact that the Client has an IP-address from the Private
Address Space[12], the client cannot be connected because the NAT router
has to find a matching External entry in its binding table for all incoming
packets. The only way to reach a host on the inside of a NAT, is for that
host to make an entry in the NAT binding table by sending a packet first.
The establishment of a connection to the inside of a network behind a NAT
is called NAT-Traversal. The unreachability of a host “behind” a NAT
without having sent an initial packet is called the NAT-Traversal problem.

3.3 How does SIP deal with NAT?

From the IETF, two reports describing how to deal with SIP and NAT have
emerged. The first is RFC 3581[13]: “An Extension to the Session Initiation
Protocol (SIP) for Symmetric Response Routing.” The extension specifies
an extra argument in the Via header of a SIP message; namely rport. The
Via header is used to indicate the transport used for the transaction and

14

Desktop sharing with SIP

identifies the location where the response is to be sent. The rport parameter
from the RFC allows a client to request that the server sends the response
back to the source IP address and port where the request came from. Before
the RFC, a port specified in the message itself was used (when using TCP
transport), or the default SIP port 5060.

The second report, still in draft, but in widespread use today, is draft-
ietf-sip-outbound-16[14]: “Managing Client Initiated Connections in the
Session Initiation Protocol (SIP).” It defines the usage of a Proxy acting
on behalf of the User Agent. This was also a possibility defined in the SIP
specification, but the draft extends it by specifying that the initial UA ini-
tiated connection should be reused to send messages back from the Proxy
to the UA. It also gives a method for keeping the bindings for that initial
connection in the NAT binding table, by regularly generating “Keep Alive”
messages.

In figure 6 is demonstrated how Alice’s UA can be reached through her
Outbound Proxy. The red line though the NAT is indicating that she initially
made the connection on which Bob’s INVITE is received.

Note that in figure 6, the Outbound Proxy and the regular SIP Proxy
for exmample.com are two different hosts. This does not have to be so. The
Outbound Proxy is another SIP network element, and may be integrated
with a Registrar, Proxy, Redirect server in one single host.

3.4 What about the sessions themselves?

The two IETF reports solve the NAT-Traversal problem for SIP, but it does
nothing for the sessions initiated through SIP.

3.4.1 Industry answers

The market first addressed the issue by supplying so called Application-level
gateways (ALG). An ALG sits on the NAT, and does deep packet inspection
and alteration of SIP messages and the SDP therein. When a UA behind a
ALG-NAT is accepting an invitation of another UA, the following steps are
followed to ensure that the NAT for the media session in traversed:

• The UA opens listening sockets for the incoming media stream.

• The UA sents a SDP response mentioning the listening sockets and
the media type and format on which it agreed upon.

• The SIP message containing the SDP response enters the ALG-NAT.

• The ALG chooses a free port for each connection specifier in the SDP

• It updates its NAT binding table with the chosen ports in the Exter-
nal column and the addresses, ports and protocols of the matching
connection specifiers in the Internal column.

15

Desktop sharing with SIP

Alice’s
User

Agent

Alice’s
Outbound

Proxy
NAT

Proxy for
example.com

Bobs
User

Agent

INVITE alice@exa
mple.com

100 Trying

INVITE
alice@e

xample.
com

100 Trying

INVITE
alice@e

xample.
com

180 Ringing

180 Ringing

180 Ringing

200 OK

200 OK

200 OK

ACK

ACK

ACK

Media session??? How to connect?

Figure 6: Edge/Outbound Proxy

• It then rewrites the SDP to contain its own public IP-address, with
the ports it just has chosen.

• It then sends out the SIP message.

Initiations for the media stream will now connect with the ALG-NAT,
which forward it to the ports the UA reserved for the stream.

This solution has the following disadvantages:

1. It fiddles with SIP’s content, which makes problem solving less trans-
parent

2. It does not work with SIP over TLS.

3. It has to understand SDP, which evolves:

16

Desktop sharing with SIP

Client
ALG
NAT

client
Media session

NAT

Figure 7: Application-level gateway

Attributes containing connectible addresses could be defined after the
ALG was programmed. It thus has intelligence in the infrastructure
that actually has to be in the User Agents.

4. It requires special NAT equipment

Especially because of the fourth, it will never have widespread usage.
Because of these disadvantages the market came with another solution: the
Session Border Controller (SBC).

Client
SBC

Proxy client
Media- -session

NAT NAT

Figure 8: Session Border Controller

A SBC behaviour is similar to that of an ALG, it inspects SIP messages
and alters the containing SDP to contain connection specifiers of a relay. It
asks both parties involved via the modified SDPs to connect to the relay. In
figure 8 the SBC is the relay itself.

SBCs are easily deployed and do not require alternate network equip-
ment. This makes them very popular. SBCs are currently widespread de-
ployed.

They do however inherit some of the disadvantages of ALGs: They make
SIP traffic harder to debug, but most importantly, they break the concept
of having all session intelligence on the User Agents, which reduces SIPs
extensibility.

3.4.2 The IETF answer

The IETF has developed several methods to deal with NAT-Traversal. The
first they came up with is STUN, which exploits the way NAT equipment
operates. In some cases it is still possible to initiate connection through
a client behind a NAT, although this only applies to stateless transport
protocols (UDP!). STUN helps discovering the type of NAT a client is
behind so it can determine if such a case is possible.

17

Desktop sharing with SIP

The second solution defined by the IETF is TURN, which is an exten-
sion of STUN. TURN is a STUN server that can operate as a relay if no
other options are available. TURN can thus also support statefull transport
protocols (such as TCP), but that is expensive, because all traffic of the
media session in such a case is relayed through the TURN server.

Finally ICE and ICE-TCP define how SIP User Agents should make
use of STUN and TURN servers, and mention all the available connectivity
from them in SDP messages, with which they may agree upon how the media
session connection should be made.

3.4.2.1 STUN Session Traversal Utilities for NAT[15]
STUN is a lightweight protocol which can help clients, to discover if they

are behind a NAT and if so, what type it is. The type of NAT is the way
a NAT router operates. Four different types of NAT were defined in the
STUN RFC 3489[16]: Full cone NAT, Address restricted cone NAT, Port
restricted cone NAT and Symmetric NAT. Although the new RFC 5389 does
not mention these types explicitly, I find it useful to examine those types,
to learn how STUN can help with NAT-Traversal. The basic operation of
STUN which we cover in this section, has not been updated by the new
RFC.

First we will explain how each different NAT operates. For every NAT
type, the possible options for setting up a media session are covered. Then
is explained how a STUN server can help in the determination of the NAT
type.

Client
10.0.0.8

Server 1
74.125.79.104

Server 2
145.100.96.70

10.0.0.8:2345 →
74.125.79.104:80

192.0.0.1:6789 →
74.125.79.104:80

← 145.100.96.
70:1357

192.0.0.1:6
789← 145.100.96.

70:1357

10.0.0.8:23
45

NAT

NAT Binding table
Internal External
10.0.0.8:2345 192.0.0.1:6789

Figure 9: Full cone NAT

18

Desktop sharing with SIP

In figure 9 is visualized what is allowed in the operation of a Full cone
NAT. A Full cone NAT, only stores an internal source IP-address and port
number, and the IP-address and port number it was translated to in its
binding table. If it only stores this data, the same external IP-address
and port will be used for connections to other external IP-addresses, as
long as the originating client uses the same source port. Furthermore, any
packet targeted at the external IP-address and port number will therefor be
forwarded by the NAT to the inside.

This is very good, because the inside hosts are basically connectible from
the outside on a specific port, as long as it has sent a packet through the
NAT originating from that port.

Client
10.0.0.8

Server 1
74.125.79.104

Server 2
145.100.96.70

10.0.0.8:2345 →
74.125.79.104:80

192.0.0.1:6789 →
74.125.79.104:80

10.0.0.8:2345 →
145.100.96.70:80

192.0.0.1:6789 →
145.100.96.70:80

← 145.100.96.70:
1357

192.0.0.1:6789← 145.100.96.70:
1357

10.0.0.8:2345

NAT

NAT Binding table
Internal External Servers

74.125.79.104
10.0.0.8:2345 192.0.0.1:6789

145.100.96.70

Figure 10: Address restricted cone NAT

Figure 10 shows the operation of an Address restricted cone NAT. Such
a NAT also stores what servers have been contacted from a inside source
address/port pair. Only servers that the client has sent a packet to from a
specific port, can send packets to the client by using its external address/port
pair. The destination port the packet was sent to from the client is not stored
in the binding table. This means that the server can sent to the client from
any source port it likes.

This is also good for setting up media sessions. The client that wants
to open a listening socket on a specific port, just has to send the party that
will connect a packet that originated from that port. It does not matter if
the other party does not receive this packet when it is itself behind a NAT,

19

Desktop sharing with SIP

because we know what external port to contact to reply and can specify that
port in the SDP. However, we do in such a case have to know the external
IP-address of the other party. The other party can discover its own external
IP-address using STUN, and inform us about it in the initial SDP.

Client
10.0.0.8

Server 1
74.125.79.104

Server 2
145.100.96.70

10.0.0.8:2345 →
74.125.79.104:80

192.0.0.1:6789 →
74.125.79.104:80

10.0.0.8:2345 →
145.100.96.70:80

192.0.0.1:6789 →
145.100.96.70:80

← 145.100.96.70:
80

192.0.0.1:6789← 145.100.96.70:
80

10.0.0.8:2345

NAT

NAT Binding table
Internal External Server & port

74.125.79.104:80
10.0.0.8:2345 192.0.0.1:6789

145.100.96.70:80

Figure 11: Port restricted cone NAT

Port restricted cone NAT as shown in figure 11 is much like Address
restricted cone NAT, but now also the port of the server that was sent a
packet to is stored in the binding table. A packet is only forwarded to the
inside client, if the packet originated from the IP-address and port where
the client first sent its packet to.

With such a NAT we are still able to setup a media session. The initiating
party has to choose a port and discover to which external port it is translated
by the NAT by contacting a STUN server. The called party does the same.
When agreed upon the session they just start sending each other messages
from the same source port, to the others party external addresses and ports
that where discovered using the STUN server. Each party is able to receive
a packet on that port, once it has sent an initial packet to the other party.

With Symmetric NAT, figure 12 each external IP-address/port pair has
its own entry in the binding table, and is translated to different source ports.
Only a server that received a packet from the inside client can see to which
external port it is translated.

When two clients are both behind a Symmetric NAT, no media session
can be setup. Direct media session connections between two parties for

20

Desktop sharing with SIP

Client
10.0.0.8

Server 1
74.125.79.104

Server 2
145.100.96.70

10.0.0.8:2345 →
74.125.79.104:80

192.0.0.1:6789 →
74.125.79.104:80

10.0.0.8:2345 →
145.100.96.70:80

192.0.0.1:5555 →
145.100.96.70:80

← 145.100.96.70:
80

192.0.0.1:5555← 145.100.96.70:
80

10.0.0.8:2345

NAT

NAT Binding table
Internal from External to External from
10.0.0.8:2345 74.125.79.104:80 192.0.0.1:6789
10.0.0.8:2345 145.100.96.70:80 192.0.0.1:5555

Figure 12: Symmetric NAT

which one is behind a Symmetric NAT can be setup if:

1. The Symmetric NAT translates to the same external IP-address, and
the other party is beheind Address restricted cone NAT.

When behind Address restricted NAT, a port can be opened for the
external address by sending a packet from that port to the external
IP-address of the client behind the Symmetric NAT. Port restricted
cone NAT would not work, because we can not know in advance what
port the client behind Symmetric NAT will use to connect.

2. The other party is behind Full cone NAT.

The port the client detected with STUN is also usable for incoming
traffic from any host.

3. The other party is not behind a NAT and not behind a firewall.

A STUN server has two different IP-addresses on the public internet. A
client can send a binding request to a STUN server. The STUN server copies
the IP-address and port it saw when receiving the packet in the response.
The client compares this with the local IP-address and port it bound to
when it sent the request. If the values differ, it knows it is behind a NAT.

It can then send new binding requests to the STUN server in which it
can ask the STUN server to reply with a different source port, a different

21

Desktop sharing with SIP

Client STUN Server
IP-address 1

IP-address 2
NAT

Figure 13: STUN Server

source IP-address, or both. It then waits for a certain time (9.5 seconds) for
a reply. If it doesn’t receive a response within that period, it learned that
its NAT does not support the requested operation.

With a properly defined flowchart (as in RFC 3489) the client can de-
termine behind what type of NAT it is.

Client TURN Server
IP-address 1

IP-address 2
Client

Media session Media session

NAT NAT

Figure 14: TURN Server

3.4.2.2 TURN Traversal Using Relays around NAT: Relay Extensions
to Session Traversal Utilities for NAT.

TURN is not a settled standard yet. As the title implies, the draft, draft-
ietf-behave-turn-12[17], specifies an extension to STUN, in which clients can
use the STUN (or now TURN) server to relay data streams for them.

3.4.2.3 ICE Interactive Connectivity Establishment: A Protocol for
Network Address Translator Traversal for Offer/Answer Protocols.

ICE is also not a settled standard yet. ICE defines a procedure that SIP
User Agents should follow, which give them the best and shortest media
session using UDP. ICE does it by defining nine steps:

1. Allocation The UA that wants to place a call gathers its candidates for
media stream connections using STUN and TURN.

2. Prioritization The candidates are sorted. Direct IP-addresses and ports
have the highest priority. External NAT addresses follow, and relayed
TURN addresses have the lowest priority.

3. Initiation The candidates with their priority are packed in SDP and
sent to the called party with the INVITE request.

22

Desktop sharing with SIP

4. Allocation The called party now does the same as the caller in step 1
and 2.

5. Information The called party does not ring the phone. It sends a pro-
visional message containing its candidates to the caller.

6. Verification The caller and the callee now start sending messages to
and from all the candidates. They sort all the successful connection
pairs on preferable priority.

7. Coordination The candidates are now all tested in priority order. This
is done by STUN requests to each other on the connections to be
used for the media streams. This allows for delays in higher priority
candidates due to packet loss, and allows other criteria such as Round
Trip Time.

8. Communication Media can now flow in both directions. The caller
can, for example, already show himself to the callee.

9. Confirmation A re-invitation is sent, with the selected candidate-pairs
in the SDP. Thereby all the SIP network elements involved know which
media paths are actually going to be used.

3.4.2.4 ICE-TCP TCP Candidates with Interactive Connectivity Es-
tablishment

This is a draft that extents the procedure described in ICE to be used
with TCP.

3.4.3 Media specific solutions

So far, we’ve seen general solutions for NAT-Traversal for media sessions.
They were also mostly oriented towards UDP based media streams. It is also
possible to provide a solution for a specific media type. One such solution
is MSRP-Relays[18] which is an IETF standard for a proxy for the Message
Session Relay Protocol[19].

3.4.3.1 MSRP The Message Session Relay Protocol.
MSRP is a media type for instant messaging int the context of a session.

This is different from the other well defined messaging standard in SIP, which
is page-mode messaging as defined in RFC 3428[20]: “Session Initiation
Protocol (SIP) Extension for Instant Messaging.” Page-mode messaging
uses SIP signaling to deliver the message by extending SIP with a MESSAGE
method . It operates just like a text-message set with a cell-phone. Session-
mode instant messaging uses the conventional scheme of SIP session setup.
The message type to be agreed upon in the SDP is then message.

23

Desktop sharing with SIP

Alice →

MSRP ydD6J6w SEND

Byte-Range: 1-112/112

Message-ID: QZ3ts6C3Ed

Content-Type: message/cpim

From: Alice <sip:alice@example.com>

To: Bob <sip:bob@example.com>

Content-Type: text/plain

Hi Bob

-------ydD6J6w$

MSRP t4gk7Sv 200 OK

-------t4gk7Sv$

← Bob

MSRP ydD6J6w 200 OK

-------ydD6J6w$

MSRP t4gk7Sv SEND

Message-ID: BczlzlN3Vf

Byte-Range: 1-114/114

Content-Type: message/cpim

From: Bob <sip:bob@example.com>

To: Alice <sip:alice@example.com>

Content-Type: text/plain

Hi Alice

-------t4gk7Sv$

Figure 15: A MSRP request/response transaction

MSRP has many aspects in common with SIP and HTTP. It also uses a
request/response transaction model. Its requests are also formated as a first
line containing a request method, and the remainder of the message as in the
Internet Message Format. Only, with MSRP, the requests and responses can
come from two sides. Also, the underlying transport TCP is not closed after
the response has been received, but remains open until by SIP signaling is
received that the session is terminated. This means that extra attention has
to be given to mark the beginning end ending of a MSRP message.

In figure 17 we see an example of a possible MSRP transaction. The mes-
sages are a bit simplified. Especially there are no To-Path and From-Path
headers, which are always part of a MSRP message, and contain the URL
for the local and remote MSRP services.

Note that the MSRP messages have a Content-Type: message/cpim
header/value pair. The message/cpim format[21] itself is an format using
the Internet Message Format. In this example message/cpim serves no other
purpose that to explicitly name the sender of the message. In a session with
only two participants this might not be necessary, but with a conference
instant messaging session (a chatroom) this information is very useful.

With the Content-Type header, MSRP can be considered a transport

24

Desktop sharing with SIP

protocol for other media types itself. And indeed the SDP messages used to
agree upon a MSRP session reflect this.

v=0

o=- 2713 2713 IN IP4 145.100.104.30

c=IN IP4 145.100.104.30

m=message 12345 TCP/TLS/MSRP *

a=accept-types:text/plain message/cpim *

a=accept-wrapped-types:text/plain

SDP Request

v=0

o=- 2766 2767 IN IP4 192.0.0.33

c=IN IP4 192.0.0.33

m=message 8888 TCP/TLS/MSRP *

a=accept-types:text/plain message/cpim *

a=accept-wrapped-types:text/plain

SDP Response

Figure 16: SDP messages for a MSRP session

In figure 16 a SDP request/response pair is given for a MSRP session.
The protocol specifier in the media field is defined as MSRP over TLS over
TCP. The media types to be transported over MSRP is defined in the at-
tribute fields. The accept-types attribute contains a list of the media-
types that may be transported over this particular MSRP session. Since the
message/cpim media type is acceptable, an extra attribute is present spec-
ifying what media-types are acceptable within a message/cpim message:
accept-wrapped-types

The asterisk at the end of the accept-types attribute, denotes that the
other party may attempt to send content with media-types that have not
been explicitly listed. This can be used to allow file transfers over MSRP as
defined in draft-ietf-mmusic-file-transfer-mech-10[22].

Client
A

Proxy Proxy

Client
B

MSRP-
Relay

NAT NAT

INV
ITE
→

← ACK

INVITE →
← ACK INVITE →←

ACK

MSRP session MSRP-

sess
ion

Figure 17: Message Session Relay Protocol

3.4.3.2 MSRP-Relays A MSRP-Relay defines a proxy for MSRP. It
can be used as follows:

1. When a invitation for a MSRP session is received, the called party
authorizes to the MSRP-Relay. A relay can either be configured man-
ually, or be discovered by DNS. Servers can by found by either querying

25

Desktop sharing with SIP

a SRV record for msrps. tcp.domain or msrp. tcp.domain , which
refer to MSRP servers respectively using TLS and plain TCP.

2. In the success response of the authentication process is a Use-Path
header included. The value of that header is an MSRP URL for the
caller to connect to. The connection to the relay is kept open.

3. The called party responds to the invitation with an SDP that has an
path attribute field which has as its value, the value just returned by
the relay in the Use-Path header.

4. The caller can now connects to the MSRP-Relay with the URL it
found in the path attribute field in the SDP.

5. The callee receives messages sent by the caller through the open con-
necting to the relay.

3.5 Evaluation

In this section we have seen how the NAT-Traversal problem is handled by
SIP. SIP does however not help with NAT-Traversal for the media session.

Industry has found a working solution, SBC, that is in widespread use.
SBCs however have the disadvantage that they put knowledge about the
media sessions in the SIP network elements, which reduces SIPs extensibility.

The IETF has come up with a solution that is relatively new and still
a draft and not a settled standard; ICE and ICE-TCP. Because of its im-
maturity, it is not widely deployed. Besides that, it solves issues that are
addressed already by SBCs. It also requires the availability of STUN and
TURN servers, that have the peculiar property that they need to operate
from two IP-addresses from the same server.

For instant messaging there is a solution for NAT-Traversal that is a
settled standard: MSRP-Relays. Because of its maturity and its relative
simplicity, SIP infrastructure supporting instant messaging is very likely to
have a MSRP-Relay server. We have seen that MSRP is a transport protocol
in itself and can be used to carry anything.

4 How to make it work

In this section we will explore which work has already been done by the
IETF members for application sharing with SIP. We will then explore exist-
ing application and desktop sharing software and look how they fit in the SIP
scheme. We will then present a solution that works in existing SIP infras-
tructure: RFB over MSRP. The remainder of the section covers the aspects
of that solution that should be taken into account with an implementation.

26

Desktop sharing with SIP

4.1 IETF proposals

In the past there have been many proposals for application sharing with
SIP by the IETF. I have found only one still active: draft-boyaci-avt-app-
sharing-00: “RTP Payload format for Application and Desktop Sharing”[23]

In this draft defines a two new protocols for application sharing. One is
called remoting and is used to send display update information. The other
is called hip (Human Interface Protocol) and describes the message types to
send mouse and keyboard events. The protocols look a lot like the messages
generated by the RFB protocol.

The protocols are proposed as a payload format for RTP. That has the
advantage that nothing has to be changed to make it work with SIP. It
can work right out of the box, in existing infrastructure supporting NAT-
Traversal for RTP. It does mention an optional RTP over TCP transport
which wouldn’t work in existing infrastructure.

One draft that has expired, but has an interesting approach is: draft-
garcia-mmusic-sdp-collaboration-00: “Session Description Protocol Exten-
sions and Conventions for Collaboration Applications”[24]

It proposes the format of SDP messages to be used for setting up ses-
sions between several application sharing protocols, notablyRFB, T.120 and
a scheme for Co-Web Browsing. The fact that is defines the SDP for so
many, not very related, protocols is one of the main reasons this draft is
rejected. Especially the Co-Web Browsing support was not considered a
needed feature. Also T.120 was considered to complicated to deal with.

v=0

o=alice 4526 4526 IN IP4 145.100.104.30

c=IN IP4 145.100.104.30

m=application 42034 TCP/RFB *

a=setup:active

a=connection:new

SDP Request

v=0

o=bob 4527 4527 IN IP4 192.0.0.33

c=IN IP4 192.0.0.33

m=application 5900 TCP/RFB *

a=setup:passive

a=connection:new

SDP Response

Figure 18: SDP messages used for RFB over TCP

Figure 18 shows the proposal for the SDP for a RFB session in draft-
garcia-mmusic-sdp-collaboration-00. Two attribute fields are given that are
defined in RFC 4145[25] “TCP-Based Media Transport in the Session De-
scription Protocol (SDP)”: setup and connection. The connection at-
tribute indicates that the media session should be a new TCP connection.
The setup attribute indicates that Alice will initiate a RFB over TCP con-
nection to Bob.

The disadvantages of this approach are that it probably doesn’t work in
current SIP infrastructure. ICE and especially ICE-TCP should be common
practice to be able to NAT-Traverse regular TCP based sessions. It also
requires a new protocol field for the media line to be registered with IANA.

27

Desktop sharing with SIP

4.2 How to make it work now

RFB is a protocol that can be used for desktop sharing. An earlier attempt
to specify a draft for SDP messages describing a RFB session has failed, pri-
marily because the draft also tried to deal with other protocols (See section
4.1). It was also likely that the NAT-Traversal for the RFB session will not
work in current SIP infrastructure.

In section 3.5 we saw that MSRP can be used to carry any media-type. A
MSRP session is likely to be traversing the NAT, because of the well defined
standards for it (MSRP-Relays). In the following sections I will investigate
RFB over MSRP as a possible solution to realise desktop sharing with SIP.

A research group at Princeton University Computer Science Department
have created an implementation of a RFB server, viewer and controlling
application, that enables application sharing in 2005/2006. It has an imple-
mentation for Linux, MS-Windows and Mac OS-X. Unfortunately it imple-
mented the Linux server as a X-windows module. It is not compatible with
modern X-windows servers anymore. The module is based on the xf4vnc
X-windows RFB server module, that also has seen no recent development.

I suggest an implementation of this adaptation of RFB for the x11vnc
RFB server as x11vnc is not a X-Windows server module, and thus less
dependent on the development of X-Windows. Also x11vnc is still actively
developed.

4.2.1 RFB over MSRP

1. RFB over MSRP as a new transport protocol

v=0

o=- 357 357 IN IP4 192.0.0.33

c=IN IP4 192.0.0.33

m=application 2855 TCP/TLS/MSRP/RFB *

a=setup:active

a=connection:new

SDP Request

v=0

o=- 307 308 IN IP4 145.100.104.30

c=IN IP4 145.100.104.30

m=application 50488 TCP/TLS/MSRP/RFB *

a=setup:passive

a=connection:new

SDP Response

2. RFB as a media-type with MSRP

v=0

o=- 357 357 IN IP4 192.0.0.33

c=IN IP4 192.0.0.33

m=message 2855 TCP/TLS/MSRP *

a=accept-types:application/x-rfb

a=setup:active

a=connection:new

SDP Request

v=0

o=- 307 308 IN IP4 145.100.104.30

c=IN IP4 145.100.104.30

m=message 50488 TCP/TLS/MSRP *

a=accept-types:application/x-rfb

a=setup:passive

a=connection:new

SDP Response

Figure 19: Two scenarios of SDP for RFB over MSRP

28

Desktop sharing with SIP

4.2.1.1 SDP messages proposal In figure 19 two possible ways to
agree upon RFB over MSRP are presented.

The first does it by specifying RFB as a protocol in the media field, much
like the SDPs suggested in draft-garcia-mmusic-sdp-collaboration-00 draft.
The protocol field shows exactly the session that we would like to setup: RFB
over MSRP over TLS over TCP. The media-type specifier in the media field
correctly indicates application. RFB is certainly not a message type media.
The setup and connection attributes are borrowed from RFC 4145, just
like suggested in draft-garcia-mmusic-sdp-collaboration-00 draft. The only
disadvantage with this scheme is that officially all possible values for the
protocol field in a media specifier should be registered with IANA.

If we don’t want to go through the hassle of registering a new protocol
field for media lines in SDP with IANA, we could use the second form.
The SDP indicates here that we wish to agree upon an ordinary MSRP
session, with application/x-rfb as he encapsulated media type. Arbitrary
media subtypes may be used with MIME when they are preceded with “x-
”. We have to have a media-type for RFB anyway to use in the MSRP
Content-Type header.

This might not seem to reflect precisely what we’re doing, but fits well
with established standards. Also draft-ietf-mmusic-file-transfer-mech-10 agrees
upon file-transfer over MSRP, with a similar message type. We can still dif-
ferentiate from file transfers, because of the extra sendonly and recvonly
attributes that are obligatory with file transfers.

However, there is no reason why the first form would not work in practice.
The SDPs are only seen by SIP network elements that do not deal with
MSRP. A MSRP-Relay will never see how we agreed upon its usage and
use, and the SDP has thus no influence on its operation at all. Therefor
I have chosen to use the first variant in the implementation, as it reflects
more clearly what we are trying to establish.

4.2.1.2 MSRP messages The MSRP messages for RFB over MSRP
could look like those in figure 20. The RFB data is encapsulated directly in
the MSRP message.

RFB, standard uses TCP to connect servers and viewers. In the standard
scheme of RFB operation, there is no way to mix multiple viewers or servers
over one TCP session. It is possible to have multiple viewers connected to
the same server, viewing the same desktop, but all those viewers have there
own TCP connection. Therefor there is no added value to encapsulate the
RFB data in CPIM type messages.

With TCP there is no concept of packet framing. Packet framing with
TCP is usually realised using request/response transaction models, but RFB
does not use TCP in this way. It just treats its TCP session as a bidirectional
stream. Packet framing is realised by having fixed sizes for the different

29

Desktop sharing with SIP

vncviewer →

MSRP ydD6J6w SEND

Byte-Range: 1-10/10

Message-ID: QZ3ts6C3Ed

Content-Type: application/x-rfb

RFB data

-------ydD6J6w$

MSRP t4gk7Sv 200 OK

-------t4gk7Sv$

← vncserver

MSRP ydD6J6w 200 OK

-------ydD6J6w$

MSRP t4gk7Sv SEND

Message-ID: BczlzlN3Vf

Byte-Range: 1-2000/2000

Content-Type: application/x-rfb

RFB data

-------t4gk7Sv$

Figure 20: A RFB over MSRP request/response transaction

message types.
For our encapsulation this means that we can chunk the RFB streams in

arbitrary sized pieces. The RFB software will make sure complete packets
are collected from the stream before they are evaluated.

In the MSRP specification there is a small paragraph which mentions
MSRP connection conserving. The idea is that a single MSRP media ses-
sion is used to share all the MSRP sessions a participant has. The MSRP
messages are then not encapsulated in the MSRP message itself, but they
should rather be multiplexed and demultiplex by the User Agent based on
the headers in the MSRP message: (particularly the To-Path and From-Path
headers)

In concert with connection conserving, MSRP also defines a way to chop
data into chunks. When two participants have an open MSRP session for
instant messaging, and one party sends a large file to the other over that
same MSRP session, the file has to be chopped into pieces which are then
each sent in a MSRP message-chunk to not congest the existing instant
messaging session.

None of this, is of relevance for our proposed solution. We do chunk
the RFB data streams, but there is no added value in sending it in MSRP
message-chunks. The RFB protocol has its own framing mechanism based
on fixed sized messages and assembles the messages from the data it receives.

30

Desktop sharing with SIP

5 Implementation

This section covers the “proof of concept” implementation of the solution
mention in 4.2. First I will describe the properties of the SIP SIMPLE
client Python software library which I have used as they underlying library
providing the SIP and MSRP functionality. Then we will look at available
software to actually share and view a desktop over RFB. Then we will see
how the implementation can connect to that software. Finally the chosen
connection method is provided.

5.1 The SIP SIMPLE client Python software library

SIP SIMPLE client is an excellent easy to use Python software library to
build SIP User Agents. It delivers classes and functions to easily use SIP
operations, but also for media sessions such as voice, file transfer and instant
messaging (including presence!).

Because it is written in Python, it should be portable to all different
operating systems that can run Python scripts. This includes Linux, Mac
OS-X and MS-Windows. The “proof of concept” implementation has been
build on Linux.

Using the SIP SIMPLE client software it is easy to setup a listening party,
or a calling party that agree upon the SDP described in section 4.2.1.1. It
provides function and classes to build a console based user-interface. It also
takes care of setting up the MSRP session including the optional usage of a
MSRP-Relay. It can do all this and deliver an MSRPSession object, which
can be used to write to and read from the MSRP session.

All this narrowed the implementation process down to two operations:

1. Read data from the RFB processing software and write it to the
MSRPSession object.

2. Read data from the MSRPSession object and write it to the RFB
processing software

When using an generalized interfaces for the RFB processing software
and the MSRPSession object, this in itself can be narrowed down to just
one function: Read data from object one and write that to object two.

The only thing remaining to be investigated is: what interface do we
have with RFB processing software to adapt to the generalized interface? To
answer this we will investigate existing RFB processing software for Linux,
and then describe what interfaces could be used to use them.

5.2 The software used

RFB is originally developed by Olivetti Research Laboratory (ORL). ORL
distributed a software product called “Virtual Network Computing” (VNC)

31

http://sipsimpleclient.com/

Desktop sharing with SIP

that used the protocol. The VNC product was published as Open Source,
which stimulated the development of many other Open Source derivatives.
The RFB protocol these products use, is not an Open standard, but is
publicly available.

VNC software typically contain a server and a viewer (or vncserver and
vncviewer). There are two modes of operation. The viewer connects to the
server to view the desktop of the computer on which the server is running,
or the server connects to the viewer providing the desktop. The second
method is called “reverse connection”. With both methods, the vncserver
is the first to send a message. The second method has the advantage that
the vncclient doesn’t have to authenticate to the vncserver.

In Linux there are three types of vncservers.

1. A separate X-Windows server instance with no screen attached. This
is how the original vncserver for UNIX based computers was imple-
mented by ORL.

2. A X-Windows module.

3. A separate program using the MIT-SHM extension to access the X-
Windows servers framebuffer data.

The last type is the preferable one, because it actually connects to an
existing display, but is not dependent of the version of X-Windows used, as
long as it supports MIT-SHM. I have found just one program of the last
type: x11vnc. x11vnc also runs on Mac OS-X.

The vncviewers all operate in the same way. They do not have special
requirements to access a X-display. I have found one interesting vncviewer,
which was implemented in pure Python: http://homepage.hispeed.ch/
py430/python/.

5.3 Endpoint connection types

The endpoints in a MSRP-session can connect to the vncserver and vncviewer
in different ways. In this subsection an overview is given of those different
ways.

The default operation of a vncserver is to listen for incomping connec-
tions. An endpoint could connect to the vncserver simply by initiating an
TCP connection. Figure 21 show such an setup.

This has many disadvantages:

1. The vncserver should be running before we can connect to it.

2. We do not have the exclusive privilege of connecting to the vncserver.
Other software, not even on the same computer, can connect to the
server too.

32

http://www.xfree86.org/current/mit-shm.html
http://www.karlrunge.com/x11vnc/
http://homepage.hispeed.ch/py430/python/
http://homepage.hispeed.ch/py430/python/

Desktop sharing with SIP

Connecting
endpoint

vncserver

MSRP-
Relay

Figure 21: Connecting endpoint

3. With this modus of operation vncservers often require a password.
Because authorization in our setup is handled by SIP, this is not de-
sirable.

Listening
endpoint

vncviewer

ru
n

co
n
n
ec

t

MSRP-
Relay

Figure 22: Listening endpoint

The default operation of a vncviewer, is to connect to a vncserver over
a TCP connection. We can let the vncserver connect to a listening socket
which we opened before we start the vncviewer. This setup is shown in
figure 22.

None of the disadvantages mention with figure 21 applies in such a setup.
We have complete control over both the TCP sessions and the program itself.

x11vnc can operate from inetd (See figure 23) It has an extra -inetd
option which let it treat the standard input and output as the connection
to the viewer.

Such a setup would be ideal. We have none of the disadvantages a
connecting endpoint has. We even have an extra advantage over an listening
endpoint in that we don’t have to deal with a TCP session at all.

Unfortunately this setup did not work in practise. x11vnc expects that it
is connected to through a socket. It does socket operations on the standard
input/output when in -netd modus.

I have not investigated the type of operations it performs on the socket.
I do not see where those would be necessary for. I suggest investigating this

33

Desktop sharing with SIP

Start
program
with pipe

vncserver -inetd

ru
n

MSRP-
Relay

Figure 23: Piping endpoint

and providing a patch for x11vnc which removes the socket operations if
they are indeed are unnecessary in inetd modus.

Listening
endpoint

x11vnc -connect

127.0.0.1:port

ru
n

co
n
n
ec

t

MSRP-
Relay

endpoint with
build in

vncviewer

Figure 24: Final solution

In section 5.2 mentioned the “reverse connection” modus of operation
of vncservers and vncviewers. It doesn’t matter if the vncviewer or the
vncserver initiated the connection, the vncserver is always the first to send
a message. The “reverse connection” mode also has the advantage that it
does not require the client to provide a password (although it could). SIP
authorization is thus sufficient.

A setup using an connecting vncserver and vncclient (and thus listening
endpoints), would be a good solution. In section 5.2 I also mentioned the
pure python vncviewer. When using this vncviewer, we not only have no
TCP sessions to manage, but also no running programs.

The most robust operation, from program and TCP session management
perspective, is thus the one presented in figure 24.

The only disadvantage is the limited functionality and performance of the
pure python vncviewer. A setup using a connecting vncserver and vncclient,
might from a user perspective be even better.

34

Desktop sharing with SIP

6 Conclusion

SIP operates in a hostile environment. Its original goals were User location,
User availability, User capabilities, Session setup and Session management.
Firewalls and NATs were not commonplace when SIP was originally de-
signed. The IETF has addressed these issues and have come up with a
working solution for SIP.

However, SIP does establishing the actual media session that is initiated
using SIP. The IETF has several proposals that can help SIP User Agents
to address these issues, but they are not widely deployed yet.

In the mean time, industry has build working solutions for SIPs primarily
usage at the moment: voice and video calls, using RTP. They have the
disadvantage that they break SIPs principle of having no intelligence about
the sessions it sets up at all. As a consequence they reduce SIPs extensibility.

From a standards perspective this is bad, but if it is also bad enough for
SIP infrastructure deployers remains to be seen.

To answer the research question, ”How can application and desktop shar-
ing, initiated by SIP, be realised in existing SIP infrastructure with the least
possible impact on that infrastructure”:

By using RTP as its transport protocol.

The draft-boyaci-avt-app-sharing-00 draft proposes a standard for ap-
plication sharing over RTP. It allows the usage of UDP as the underlying
transport for both multicast and unicast session, but it recommends using
TCP for unicast session. The TCP based sessions using this protocol will
probably not work in existing industry solutions.

If there will be enthusiasm to implement a brand new application shar-
ing standard when there already exist well established publicly available
standards such as the RFB protocol, also remains to be seen.

In this research project we have also explored the usage of MSRP to
transport application sharing protocols (RFB specifically). MSRP addresses
the NAT-Traversal problem with a well defined standard. Also, MSRP itself
is the standard for instant messaging with SIP.

Instant messaging is very popular. It would mean substantial added
value for SIP deployers to support it. I have not investigated how widely
MSRP is supported, but if it is available, the solution explored in sections 4
and 5 (RFB over MSRP) is a solution that can be used and is working now.

35

Desktop sharing with SIP

Glossary

address-of-record In SIP, the address-of-record is the regular SIP
address with which an end-user may contact an-
other end-user. A SIP Proxy for the domain of
the address-of-record should be able to find one or
more contact-addresses for that address-of-record,
to make the connection to the UA’s of the end-user
with that address-of-record, 5

Application Sharing The sharing of the graphical user-interface of
an application amongst multiple users simultane-
ously in real time, 3

contact-address In SIP, a contact-address denotes a host, port,
protocol and id on which a SIP end-user with
an address-of-record can be contacted. A Regis-
trar binds a SIP address-of-record to one or more
contact-addresses, 5

Desktop Sharing The sharing of a computer desktop amongst mul-
tiple users simultaneously in real time, 3

EMSSC Enhanced Mail System Status Codes[10]: A stan-
dard for status codes consisting of three decimals.
The first indicates the class of the status: 2 for
success, 4 for request failure and 5 for server fail-
ure. The second digit indicates the subject of the
status code and the third the details. SIP (and
HTTP) use this format for the response codes in
their transaction model. In SIP (and HTTP), the
class digit is extended with: 1 for provisional re-
sponses (request in progress), 3 for redirection and
6 for global failures, 7

HTTP Hypertext Transfer Protocol [8]: The communica-
tion protocol for the World Wide Web. SIP mes-
sages look a lot like HTTP messages. They fol-
low a request/response transaction model. Re-
quests and responses are formated using the Inter-
net Message Format, but are preceded by an extra
line. In case of the request, this first line contains
the request method, the method arguments, and
ends with a protocol specifier. The first line of a
response consists of a protocol specifier, followed
by a status code and a textual representation of
that status (much like the Enhanced Mail System
Status Codes standard), 7

∗These descriptions are shamelessly copied from Wikipedia on 30th January 2009

36

Desktop sharing with SIP

IANA Internet Assigned Numbers Authority : The entity
that oversees global IP address allocation, root
zone management for the Domain Name System
(DNS), media types, and other Internet protocol
assignments∗, 3

IETF Internet Engineering Task Force: A large open in-
ternational community of network designers, op-
erators, vendors, and researchers concerned with
the evolution of the Internet architecture and the
smooth operation of the Internet. See http:
//www.ietf.org/, 3

IM Instant Messaging : A form of real-time communi-
cation between two or more people based on typed
text∗, 4

Internet Message Format A message formated with this standard[9], con-
sists of a set of headers, optionaly followed by a
empty line and the message payload. HTTP and
SIP use this format in their transaction model, 7,
23

ITU International Telecommunication Union: Interna-
tional organization established to standardize and
regulate international radio and telecommunica-
tions∗, 36

Location service In SIP a Location service is the database in which
the address-of-record bindings to their contact-
addresses are stored. Registrars and Proxies for
a domain must have access to the same Location
service, 8

MIME Multipurpose Internet Mail Extensions: An Inter-
net standard that extends the format of e-mail to
support:

• Text in character sets other than ASCII

• Non-text attachments

• Message bodies with multiple parts

• Header information in non-ASCII character
sets

MIME’s use, however, has grown beyond describ-
ing the content of e-mail to describing content
type in general∗ See [26, 27], 3

37

http://www.ietf.org/
http://www.ietf.org/

Desktop sharing with SIP

NAPTR A Name Authority Pointer is a record type in
DNS. It adds a extensible mechanism to DNS for
providing different types of information without
having to use a new DNS record type. In SIP,
NAPTR records are used to specify the registrars
for a certain domain, 6

NAT Network Address Tanslation: Is a technique with
which the network address information is altered
in a packet when it passes through a router. Most
common usage is network Masquerading, which
means that the (private) source addresses of a net-
work are altered to a single (public) address. With
this technique an internet connection which ser-
vices a single IP-address (as is common with con-
sumer ADSL and cable subscriptions), can have
multiple computers use that internet connection,
13

Network Transparency The ability to have the user-interface of an re-
motely started application presented on a local
display. The remote application is started on a
remote server from a local computer. The user-
interface of that application is then presented on
the computer screen of the local computer. Net-
work transparency is a feature found in the X-
windows system and RDP. It is a subset of the
features of application sharing, 3

PSTN Public Switched Telephone Network : The network
of the world’s public circuit-switched telephone
networks∗, 4

RDP Remote Desktop Protocol : A protocol to be
used for desktop or application sharing, originally
based on the ITU-T.128 protocol[28], 4

Redirect server In SIP, a Redirect server is the network element
that redirects address-of-records to other URLs.
Often those other URLs are again address-of-
records, but they don’t have to be. How an end-
user configures a redirection for its address-of-
record is not specified with SIP., 11

RFB Remote Framebuffer : a simple protocol for remote
access to graphical user interfaces∗ See [2], 4

RTP The Real-time Transport Protocol [29] defines a
standardized packet format for delivering audio
and video over the Internet∗, 11

38

Desktop sharing with SIP

SDP Session Description Protocol [11]: SDP is used to
agree on the type of media used and on the ip-
addresses, port numbers and protocols used. SDP
uses a request/response transaction model. First a
party is contacted using a signalling protocol, such
as SIP, to request a session for a certain media
type. If the contacted party agrees on the media
type, it returns (again via the signalling protocol),
a ip-address, port number and protocol to be used
to setup the session, 8

SIP Session Initiation Protocol , 3
SIP Proxy In SIP, a Proxy is the network element which can

be contacted for a address-of-record. It forwards
the requests to that address-of-records contact-
address, 8

SIP Registrar In SIP, a Registrar is the network element with
which the UA registers and authenticates its
address-of-record. The Registrar binds that ad-
dress then to the UA’s, contact-address (its host
location), 6

UA User Agent: The software or device setting up a
SIP session on behalf of the end-user, 4

VOIP Voice over Internet Protocol : General term for a
family of transmission technologies for delivery of
voice communications over IP networks such as
the Internet∗, 4

39

Desktop sharing with SIP

References

[1] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson,
R. Sparks, M. Handley, and E. Schooler. SIP: Session Initiation Protocol.
RFC 3261 (Proposed Standard), June 2002. Updated by RFCs 3265, 3853,
4320, 4916, 5393.

[2] Tristan Richardson. The RFB Protocol. http://www.realvnc.com/docs/
rfbproto.pdf, August 2008.

[3] J. Rosenberg and H. Schulzrinne. Session Initiation Protocol (SIP): Locating
SIP Servers. RFC 3263 (Proposed Standard), June 2002.

[4] M. Mealling. Dynamic Delegation Discovery System (DDDS) Part Three:
The Domain Name System (DNS) Database. RFC 3403 (Proposed Standard),
October 2002.

[5] A. Gulbrandsen, P. Vixie, and L. Esibov. A DNS RR for specifying the location
of services (DNS SRV). RFC 2782 (Proposed Standard), February 2000.

[6] T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol
Version 1.2. RFC 5246 (Proposed Standard), August 2008.

[7] J. Franks, P. Hallam-Baker, J. Hostetler, S. Lawrence, P. Leach, A. Luotonen,
and L. Stewart. HTTP Authentication: Basic and Digest Access Authentica-
tion. RFC 2617 (Draft Standard), June 1999.

[8] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and
T. Berners-Lee. Hypertext Transfer Protocol – HTTP/1.1. RFC 2616 (Draft
Standard), June 1999. Updated by RFC 2817.

[9] P. Resnick. Internet Message Format. RFC 2822 (Proposed Standard), April
2001. Obsoleted by RFC 5322, updated by RFCs 5335, 5336.

[10] G. Vaudreuil. Enhanced Mail System Status Codes. RFC 1893 (Proposed
Standard), January 1996. Obsoleted by RFC 3463.

[11] M. Handley, V. Jacobson, and C. Perkins. SDP: Session Description Protocol.
RFC 4566 (Proposed Standard), July 2006.

[12] Y. Rekhter, B. Moskowitz, D. Karrenberg, G. J. de Groot, and E. Lear. Ad-
dress Allocation for Private Internets. RFC 1918 (Best Current Practice),
February 1996.

[13] J. Rosenberg and H. Schulzrinne. An Extension to the Session Initiation Pro-
tocol (SIP) for Symmetric Response Routing. RFC 3581 (Proposed Standard),
August 2003.

[14] C. Jennings and R. Mahy. Managing Client Initiated Connections in the
Session Initiation Protocol (SIP). http://www.ietf.org/internet-drafts/
draft-ietf-sip-outbound-16.txt, October 2008.

[15] J. Rosenberg, R. Mahy, P. Matthews, and D. Wing. Session Traversal Utilities
for NAT (STUN). RFC 5389 (Proposed Standard), October 2008.

40

http://www.realvnc.com/docs/rfbproto.pdf
http://www.realvnc.com/docs/rfbproto.pdf
http://www.ietf.org/internet-drafts/draft-ietf-sip-outbound-16.txt
http://www.ietf.org/internet-drafts/draft-ietf-sip-outbound-16.txt

Desktop sharing with SIP

[16] J. Rosenberg, J. Weinberger, C. Huitema, and R. Mahy. STUN - Simple
Traversal of User Datagram Protocol (UDP) Through Network Address Trans-
lators (NATs). RFC 3489 (Proposed Standard), March 2003. Obsoleted by
RFC 5389.

[17] R. Mahy J. Rosenberg and P. Matthews. Traversal Using Re-
lays around NAT (TURN): Relay Extensions to Session Traversal
Utilities for NAT (STUN). http://www.ietf.org/internet-drafts/
draft-ietf-behave-turn-12.txt, November 2008.

[18] C. Jennings, R. Mahy, and A. B. Roach. Relay Extensions for the Message
Sessions Relay Protocol (MSRP). RFC 4976 (Proposed Standard), September
2007.

[19] B. Campbell, R. Mahy, and C. Jennings. The Message Session Relay Protocol
(MSRP). RFC 4975 (Proposed Standard), September 2007.

[20] B. Campbell, J. Rosenberg, H. Schulzrinne, C. Huitema, and D. Gurle. Ses-
sion Initiation Protocol (SIP) Extension for Instant Messaging. RFC 3428
(Proposed Standard), December 2002.

[21] G. Klyne and D. Atkins. Common Presence and Instant Messaging (CPIM):
Message Format. RFC 3862 (Proposed Standard), August 2004.

[22] M. Garcia-Martin, M. Isomaki, G. Camarillo, S. Loreto, and P. Kyzi-
vat. A Session Description Protocol (SDP) Offer/Answer Mecha-
nism to Enable File Transfer. http://www.ietf.org/internet-drafts/
draft-ietf-mmusic-file-transfer-mech-10.txt, January 2009.

[23] O. Boyaci and H. Schulzrinne. RTP Payload format for Applica-
tion and Desktop Sharing. http://www.ietf.org/internet-drafts/
draft-boyaci-avt-app-sharing-00.txt, October 2008.

[24] M. Garcia-Martin and J. Ott. Session Description Protocol (SDP) Extensions
and Conventions for Collaboration Applications. http://www.netlab.
tkk.fi/~jo/papers/draft-garcia-mmusic-sdp-collaboration-00.txt,
February 2008.

[25] D. Yon and G. Camarillo. TCP-Based Media Transport in the Session De-
scription Protocol (SDP). RFC 4145 (Proposed Standard), September 2005.
Updated by RFC 4572.

[26] N. Freed and N. Borenstein. Multipurpose Internet Mail Extensions (MIME)
Part One: Format of Internet Message Bodies. RFC 2045 (Draft Standard),
November 1996. Updated by RFCs 2184, 2231, 5335.

[27] N. Freed and N. Borenstein. Multipurpose Internet Mail Extensions (MIME)
Part Two: Media Types. RFC 2046 (Draft Standard), November 1996. Up-
dated by RFCs 2646, 3798, 5147.

[28] T.128. http://www.itu.int/rec/T-REC-T.128/en, February 1998.

[29] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson. RTP: A Transport
Protocol for Real-Time Applications. RFC 3550 (Standard), July 2003.

41

http://www.ietf.org/internet-drafts/draft-ietf-behave-turn-12.txt
http://www.ietf.org/internet-drafts/draft-ietf-behave-turn-12.txt
http://www.ietf.org/internet-drafts/draft-ietf-mmusic-file-transfer-mech-10.txt
http://www.ietf.org/internet-drafts/draft-ietf-mmusic-file-transfer-mech-10.txt
http://www.ietf.org/internet-drafts/draft-boyaci-avt-app-sharing-00.txt
http://www.ietf.org/internet-drafts/draft-boyaci-avt-app-sharing-00.txt
http://www.netlab.tkk.fi/~jo/papers/draft-garcia-mmusic-sdp-collaboration-00.txt
http://www.netlab.tkk.fi/~jo/papers/draft-garcia-mmusic-sdp-collaboration-00.txt
http://www.itu.int/rec/T-REC-T.128/en

	Introduction
	What is application and desktop sharing?
	What is SIP?
	Why application/desktop sharing with SIP

	How does SIP work?
	Overview
	Registration
	Finding the registrar
	Authenticating to the registrar

	Calling out
	The SDP format

	Redirections
	Other features of SIP

	The NAT-Traversal problem
	What is NAT?
	How does NAT work?
	How does SIP deal with NAT?
	What about the sessions themselves?
	Industry answers
	The IETF answer
	STUN
	TURN
	ICE
	ICE-TCP

	Media specific solutions
	MSRP
	MSRP-Relays

	Evaluation

	How to make it work
	IETF proposals
	How to make it work now
	RFB over MSRP
	SDP messages proposal
	MSRP messages

	Implementation
	The SIP SIMPLE client Python software library
	The software used
	Endpoint connection types

	Conclusion
	Glossary
	References

